Effect of Thermal Treatments on the Transduction Behaviors of Conductometric Hydrogen Gas Sensors Integrated with HCl-Doped Polyaniline Nanofibers

نویسندگان

  • Pen-Cheng Wang
  • Yaping Dan
  • Luke A. Somers
  • Alan G. MacDiarmid
  • A. T. Charlie Johnson
چکیده

We present the effect of thermal treatments on the transduction behaviors of HCl-doped polyaniline (PANI) nanofibers integrated in conductometric devices upon exposure to 1% H2 (carried by N2). After drying in N2 at 25oC for 12 hours, devices showed a ~10% decrease in electrical resistance upon exposure to 1% H2. However, devices subject to 12-hour drying in N2 at 25oC followed by further thermal treatments in N2 at 100oC, 164oC or 200oC for 30 minutes showed different transduction behaviors. Specifically, devices subject to thermal treatments at 100oC and 164oC showed a decrease in electrical resistance by ~7% and <0.5%, respectively. More interestingly, the device subject to thermal treatment at 200oC showed a transduction behavior with opposite polarity, i.e. a ~5% increase in electrical resistance upon exposure to 1% H2. SEM, FTIR and TGA were employed to investigate the effect of thermal treatments on the morphology and chemical characteristics of HCl-doped polyaniline nanofibers. The results indicated that the change in the devices? interesting transduction behaviors might be related to the thermal treatment effects on the HCldoped PANI nanofibers in (i) removal of adsorbed water, and (ii) crosslinking and/or degradation of polymer backbones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doped and Dedoped Polyaniline Nanofiber Based Conductometric Hydrogen Gas Sensors

Template-free, rapid polymerisation was employed to synthesize polyaniline nanofibers using chemical oxidative polymerisation of aniline, with HCl as a dopant. The doped and dedoped nanofibers were deposited onto conductometric sapphire transducers for gas sensing applications. The sensors were exposed to various concentrations of hydrogen (H2) gas at room temperature. The sensitivity was measu...

متن کامل

Polyaniline Nanofiber Based Surface Acoustic Wave Gas Sensors—Effect of Nanofiber Diameter on H2 Response

A template-free rapidly mixed reaction was employed to synthesize polyaniline nanofibers using chemical oxidative polymerization of aniline. Hydrochloric acid (HCl) and camphor sulfonic acid (CSA) were used in the synthesis to obtain 30and 50-nm average diameter polyaniline nanofibers. The nanofibers were deposited onto layered ZnO/64◦ YX LiNbO3 surface-acoustic-wave transducers. The sensors we...

متن کامل

Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases

Electrospun polyaniline (PAni) fibers doped with different levels of (+)-camphor-10-sulfonic acid (HCSA) have been fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes i...

متن کامل

Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers

Camphor sulfonic acid (CSA)-doped polyamide 6/polyaniline (PA6/PANI) composite nanofibers were fabricated using in situ polymerization of aniline under different CSA concentrations (0.02, 0.04, 0.06, 0.08 and 0.10 M) with electrospun PA6 nanofibers as templates. The structural, morphological and ammonia sensing properties of the prepared composite nanofibers were studied using scanning electron...

متن کامل

A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms

A single polyaniline nanofiber field effect transistor (FET) gas sensor fabricated by means of electrospinning was investigated to understand its sensing mechanisms and optimize its performance. We studied the morphology, field effect characteristics and gas sensitivity of conductive nanofibers. The fibers showed Schottky and Ohmic contacts based on different electrode materials. Higher applied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016